JM 202 : Basic Biological Chemistry

3 Credits

- A) Concepts in chemistry
 - i) Water, acids , bases and buffers
 - ii) Thermodynamics
 - iii) Stereochemistry
 - iv) Bonding and non-bonding interactions Non-bonding interactions In biological macromolecules
 - v) Basic introduction to crystallography

Study material: *Biochemistry*, Voet&Voet, *Physical Chemistry: Principles and Applications in Biological Sciences*, Tinoco Jr., Sauer, Wang, Puglisi, Harbison, Rovnyak, *Proteins: structure and molecular properties*, Creighton

- B) Biomolecules
 - i) Protein conformation Ramachandran Map
 - ii) Proteins: super-secondary structures and folds all α , α/β and all β folds
 - iii) DNA structure allowed dihedral angles, A/B/Z DNA conformations, major and minor grooves
 - iv) Protein-DNA interaction (major folds taking specific structural examples, helix-turn-helix, β-sheets, Zn-fingers, Leucine zippers)
 - v) Protein folding (Levinthal's paradox, Anfinsen's and Creighton's experiments, Wolynes' folding funnel)

Study material: *Introduction to protein structure*, Brandon & Tooze, *Biochemistry*, Voet&Voet, *Structure and mechanism in protein science*, A. Fersht

- C) Introduction to Biophysical techniques
 - i) Beer-Lambert's law
 - ii) Fluorescence spectroscopy
 - iii) Circular Dichroism
 - iv) Mass spectrometry including analysis of peptide fragmentation pattern to obtain sequence

Study material: Class notes and hand-outs

- D) Enzyme catalysis and kinetics
 - i) Catalytic mechanisms
 - ii) Chemical kinetics as preamble to enzyme kinetics. Simple first-order and second-order reactions
 - <u>Michaelis–Menten</u> kinetics, reversible reactions and Briggs-Haldane relationship, effect of pH, kinetics of inhibition, bisubstrate reactions, Scatchard analysis for ligand binding, co-operativity (positive and negative), allostery, derivation of kinetic models using rapid equilibrium and steady state assumptions

Study material: *Biochemistry*, Voet&Voet, *Biochemical calculations*, Segal, *Enzyme kinetics*, Segal

- E) Metabolism
 - i) General design principles of metabolism
 - ii) Energy metabolism (glycolysis, TCA cycle and oxidative phosphorylation)

Study material: Biochemistry, Metzler